33,363 research outputs found

    Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection.

    Get PDF
    Leishmania major are intramacrophage parasites whose eradication requires the induction of T helper 1 (Th1) effector cells capable of activating macrophages to a microbicidal state. Interleukin 12 (IL-12) has been recently identified as a macrophage-derived cytokine capable of mediating Th1 effector cell development, and of markedly enhancing interferon gamma (IFN-gamma) production by T cells and natural killer cells. Infection of macrophages in vitro by promastigotes of L. major caused no induction of IL-12 p40 transcripts, whereas stimulation using heat-killed Listeria or bacterial lipopolysaccharide induced readily detectable IL-12 mRNA. Using a competitor construct to quantitate a number of transcripts, a kinetic analysis of cytokine induction during the first few days of infection by L. major was performed. All strains of mice examined, including susceptible BALB/c and resistant C57BL/6, B10.D2, and C3H/HeN, had the appearance of a CD4+ population in the draining lymph nodes that contained transcripts for IL-2, IL-4, and IFN-gamma (and in some cases, IL-10) that peaked 4 d after infection. In resistant mice, the transcripts for IL-2, IL-4, and IL-10 were subsequently downregulated, whereas in susceptible BALB/c mice, these transcripts were only slightly decreased, and IL-4 continued to be reexpressed at high levels. IL-12 transcripts were first detected in vivo by 7 d after infection, consistent with induction by intracellular amastigotes. Challenge of macrophages in vitro confirmed that amastigotes, in contrast to promastigotes, induced IL-12 p40 mRNA. Reexamination of the cytokine mRNA at 4 d revealed expression of IL-13 in all strains analyzed, suggesting that IL-2 and IL-13 may mediate the IL-12-independent production of IFN-gamma during the first days after infection. Leishmania have evolved to avoid inducing IL-12 from host macrophages during transmission from the insect vector, and cause a striking induction of mRNAs for IL-2, IL-4, IL-10, and IL-13 in CD4+ T cells. Each of these activities may favor survival of the organism

    Nonadiabatic noncyclic geometric phase and persistent current in one-dimensional rings

    Get PDF
    The total geometric phase is composed of the nonadiabatic noncyclic Pancharatnam phase, the usual Aharonov-Bohm (AB) phase, and the effective AB phase. It is found that the persistent current in one-dimensional rings is determined from this phase. As applications, we address first the geometric phase and the persistent current in a ring subject to a cylindrically symmetric electromagnetic field. We show that the Pancharatnam phase recovers the Aharanov-Anandan phase in the case of cyclic evolution, as well as the Berry phase in the adiabatic evolution. Moreover, we discuss the persistent current induced by the spin-orbit-induced geometric phase in the presence of a local magnetic field. Generalization to many-body cases is also addressed. ©1999 The American Physical Society.published_or_final_versio

    Indirect rotor field orientation vector control for induction motor drives in the absence of current sensors

    Get PDF
    Author name used in this publication: S. L. HoVersion of RecordPublishe

    Simulating and Exploring Weyl Semimetal Physics with Cold Atoms in a Two-dimensional Optical Lattice

    Get PDF
    published_or_final_versio

    Optimization of nutritional requirements and ammonium feeding strategies for improving vitamin B12 production by Pseudomonas denitrificans

    Get PDF
    Statistical experiment design and data analysis were used to establish the major factors in a chemically defined medium and to develop an ammonium control strategy to optimize the specific vitamin B12 production rate (Yp) of Pseudomonas denitrificans. Through Plackett-Burman design, the major factors of glucose, ammonium sulfate and KCl were selected as the significant factors affecting vitamin B12 biosynthesis and these were further optimized by central composite design with response surface methodology. The maximum Yp of 34.2 μg/gDCW/h was obtained in batch cultivation under the estimated optimal initial composition of glucose (93.6 g/l), (NH4)2SO4 (7.93 g/l) and KCl (1.24 g/l). Ammonium control strategies in fed-batch fermentation showed that when ammonium concentration was maintained at 40 mmol/l, the maximum Yp reached 36.0 ± 1.31 μg/gDCW/h, which was 57.2% higher than that of the control (22.9 ± 0.83 μg/gDCW/h). This ammonium control strategy successfully enhanced the industrial production, resulting in a stable high vitamin B12 production of 212.02 ± 3.03 mg/l and Yp of 37.1 μg/gDCW/h.Key words: Statistical designs, Pseudomonas denitrificans, chemically defined medium, ammonium controlling strategy, vitamin B12

    Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity

    Get PDF
    We analyze a new scheme for quantum information processing, with superconducting charge qubits coupled through a cavity mode, in which quantum manipulations are insensitive to the state of the cavity. We illustrate how to physically implement universal quantum computation as well as multiqubit entanglement based on unconventional geometric phase shifts in this scalable solid-state system. Some quantum error-correcting codes can also be easily constructed using the same technique. In view of the gate dependence on just global geometric features and the insensitivity to the state of cavity modes, the proposed quantum operations may result in high-fidelity quantum information processing. © 2005 The American Physical Society.published_or_final_versio

    Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity

    Get PDF
    Marine waste is an abundant renewable source for the recovery of several value added metabolites with potential industrial applications. This study describes the production of chitinase on marine waste, with the subsequent use of the same marine waste for the extraction of antioxidants. A chitinase-producing bacterium isolated from seafood effluent was identified as Alcaligenes faecalis AU02. Optimal chitinase production was obtained in culture conditions of 37°C for 72 h in 100 ml medium containing 1% shrimp and crab shell powder (1:1) (w/v), 0.1% K2HPO4, and 0.05% MgSO4·7H2O. The molecular weight of chitinase was determined by SDS-PAGE to be 36 kDa. The optimum pH, temperature, pH stability, and thermal stability of chitinase were about 8, 37°C, 5–12, and 40–80°C, respectively. The antioxidant activity of A. faecalis AU02 culture supernatant was determined through scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) as 84%, and the antioxidant compound was characterized by TLC and its FT-IR spectrum. The present study proposed that marine wastes can be utilized to generate a high-value-added product and that pharmacological studies can extend its use to the field of medicine

    Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition

    Get PDF
    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications

    Minimal basilar membrane motion in low-frequency hearing

    Get PDF
    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea
    corecore